机密★启用前

重庆邮电大学

2021 年攻读硕士学位研究生入学考试试题

科目名称: 材料力学(A) 卷

科目代码:

806

考生注意事项

1、答题前、考生必须在答题纸指定位置上填写考生姓名、报考单位和考生编号。

所有答案必须写在答题纸上,写在其他地方无效

- 填(书)写必须使用黑色字迹钢笔、圆珠笔或签字笔。
- 4、考试结束,将答题纸和试题一并装入试卷袋中交回。
- 5、本试题满分150分,考试时间3小时。

- 一、选择题: (本大题共3小题,每小题4分,共12分)
- 1、直径 d 和长度 l 都相同,而材料不同的两根轴,在相同的扭矩 作用下有。
- A、它们的最大切应力相同 B、它们的扭转角相同
- C、它们的最大切应力不同
- D、它们的单位长度扭转角相同
- 2、 不同材料的三根杆的横截面面积及长度均相等, 其材料的应 力-应变曲线分别如图 1 所示。其中强度最高、刚度最大、塑

好的杆分别是。

- A, a, b, c
- B, b, c, a
- C_{λ} c, b, a
- $D_{\lambda} b$, a, c_{\circ}

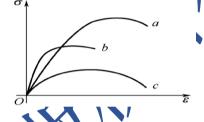
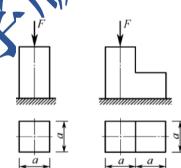



图 1: 第一大题选择题第 2 小题

3、 一正方形截面粗短立柱如图 a) 所示, 若将其底面加宽 如图 2 中 b)所示, 但原厚度 变,则该立柱的整体强,

b)

- A、提高-
- B、降低
- C、提高

图 2: 第一大题选择题第 3 小题

a)

- 空题: (本大题共 4 小题,每小题 3 分,共 12 分)
- 梁在外力作用下, 横截面上既有正应力又有切应力的弯曲称为 弯曲,其中性轴是 和 的交线。
- 2、已知一危险点的单元体处于平面应力状态,最大切应变 ymax=5×10⁻⁴,通过该点相互垂直的微截面上正应力之和为 28MPa。 若材料切变模量 G=80GPa。则用最大切应力强度理论校核时的相 当应力 σ_{r3} = MPa。

注: 所有答案必须写在答题纸上, 试卷上作答无效! 第 2 页/共 6 页

3、如图 3 所示刚架中,水平梁为刚杆,竖直杆①、②均为细长弹性杆,只考虑与纸面平行的平面内的失稳. 则(1) 刚架失稳时载荷的最小值 F 由杆 _____决定; [注:填入①,②] (2) 刚架失稳时载荷的最小值 F=_____(3)若将长度 l 变为缩短为原来的一半,则临界压力会变为原临界载荷的 倍。

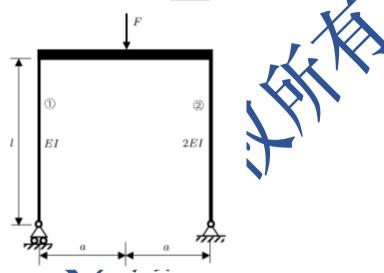


图 3: 第 大题填空题第 3 小题

- 4、第四强度理论认为 是引起屈服的主要因素。
- 三、简答题、本大题共1小题,每小题6分,共6分) 积分类和叠加法是求梁弯曲变形的两种方法,简述用积分法 求梁弯曲变形的步骤,并指出叠加法求弯曲变形时应具备的条件。

四、作图题: (本大题共 2 小题,每小题 10 分,共 20 分) 2 绘制如图 4 所示轴的内力图。

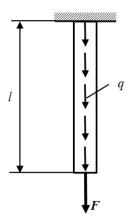
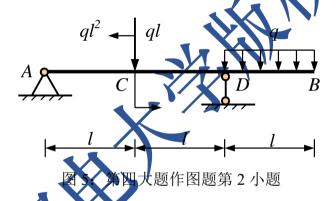



图 4: 第四大题作图题第 1 小题

2、作出如图 5 所示梁的剪力图和弯矩图。

五、计算题:(本大题共6小题,共100分)

1、 本题 (5,7) 如图 6 所示桁架,受铅垂载荷 F=50kN 作用, 杆 (5,7) 的横截面均为圆形,其直径分别为 (6)2 的横截面均为圆形,其直径分别为 (6)3 (6)4 的许用应力均为 (6)5 (6)5 (6)6 (6)7 (6)8 (6)8 (6)9 (6)

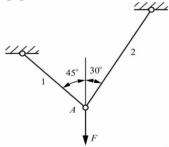


图 6: 第五大题计算题第 1 小题

注: 所有答案必须写在答题纸上, 试卷上作答无效! 第 4 页/共 6 页

- 2、(本题 15 分) 如图 7 所示等直圆杆,已知 d=40mm,a=400mm,G=80GPa, φ_{RD} =1°。试求:
- (1) 最大切应力 τ_{max};
- (2) 截面 A 相对于截面 D 的扭转角 φ_{DA} 。

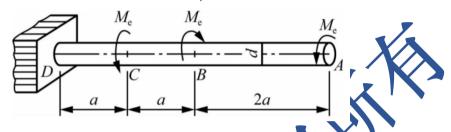


图 7: 第五大题计算题第 2 小题

3、(本题 20 分)如图 8 所示,一直径 d =20mm 的实心圆轴,在轴的的两端加扭矩 M_e =126N·m。在轴的表面上某一点 A 处用变形仪测出与轴线成-45°方向的应变 ϵ =5.0×10 $^{+}$,试求此圆轴材料的剪切弹性模量 G。

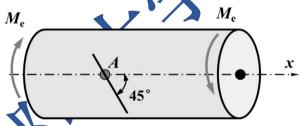


图 8: 第五大题计算题第 3 小题

- 4、(本题 20 分 矩形截面梁的载荷和截面尺寸(单位:mm)如图 9 折示。已知材料的许用应力[σ]=160MPa,[τ]=50MPa。试求:
- (1) 图示梁的剪力图和弯矩图;
- (2) 校核其强度 (考虑剪切强度)。

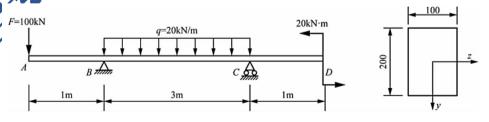


图 9: 第五大题计算题第 4 小题

注: 所有答案必须写在答题纸上, 试卷上作答无效! 第 5 页/共 6 页

5、(本题 20 分) 如图 10 所示,杆 AB 和 CD 水平放置且刚性连接, $AB \perp CD$,A 端固定,受到竖直向下的力 F_1 和 F_2 作用, F_1 =0.5kN, F_2 =1kN,[σ]=160MPa。(1)用第三强度理论计算图(a)中杆 AB的直径;(2)如图(b)所示,在 B 端增加一水平力 F_3 = 20kN,若此时 AB 杆的直径 d = 40mm,试校核 AB 杆的强度。

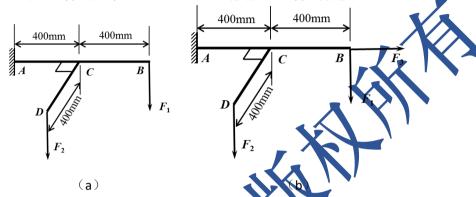


图 10: 第五大题计算题第 5 小题

6、(本题 10 分)如图 11 所示悬臂梁的抗弯刚度 $EI=30\times10^3$ N $*m^2$ 。 弹簧的刚度为 175×10^3 N*m。 若梁与弹簧间的空隙为 1.25mm,当集中力 F=450N 作用于梁的自由端时,试问弹簧将分担多大的力?

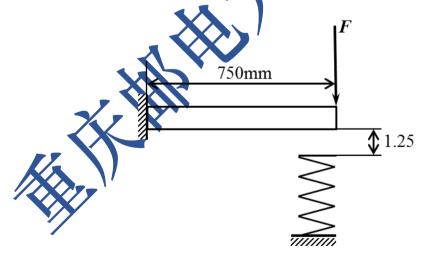


图 11: 第五大题计算题第 6 小题

注: 所有答案必须写在答题纸上, 试卷上作答无效! 第 6 页/共 6 页